Kirkwood’s

Discrete Projects:
Java Code – done {“Discrete \Java\...”}:

Constructs:

CalcPI

Recursion:

Factorial, Fibonacci, powers, Euclidean GCF
check TryComb – C(5,3)
Semi-Done {attached}:
Hashing D.2.5
Recursion vs. iterative: GCF, Factorial, Fibonacci, Binary search D.7.9

Modular Arithmetic (coin change and Euclidean GCF D.3.3
In process (used in class, but not completely written up for dispersal:

CS Unplugged: Card Flip Magic (Error Detection Matrix D.2

Polish Notation (recursive Tree D.7.9 and D.4.3

Recursive Sorts/Searches D.7.7 {CS Unplugged: Look at Battleships} – {CS Unplugged:

Sorting Algorithms}

Minimal Spanning Trees – Matrices { CS Unplugged: The Muddy City} D.4.1 and D.4.2

Encryption { CS Unplugged: Kid Krypto} D.11.3

Sorts D.7.7 and D.12.1 - 3
Alex Brunner’s (Kirkwood’s student {attached}

Encoder spell

Convex hull spell
D.2 Relations and Functions: Demonstrate understanding of relations and

functions.

D.2.5 Design simple algorithms such as hashing, checksum or error-correction

Functions

D.3 Modular Arithmetic: Demonstrate understanding of modular arithmetic and its

relationship to set theory.

D.3.1 Perform modular arithmetic operations.

D.3.3 Solve practical problems or develop algorithms using modular arithmetic or

congruence relations such as creating error detection codes, calculating

greatest common factor, and solving simple coin-change problems.

D.4 Graph Theory: Understand how graphs of vertices joined by edges can model

relationships and be used to solve a wide variety of problems.
D.4.1 Use graphs to model and solve problems such as shortest paths, vertex

coloring, critical paths, routing, and scheduling problems.

D.4.2 Convert from a graph to an adjacency matrix and vice versa.

D.4.3 Use directed graphs, spanning trees, rooted trees, binary trees, or decision

trees to solve problems.

D.4.6 Compare and contrast different graph algorithms in terms of efficiency and

types of problems that can be solved.

D.7 Recurrence, Recursion and Induction:

D.7.5 Describe arithmetic and geometric sequences recursively.

D.7.7 Apply recurrence or recursion to the design and understanding of sorting and
searching algorithms.

D.7.8 Analyze algorithms for efficiency, including how the number of steps grows as a
function of the size of the problem.

D.7.9 Compare the efficiency of iterative and recursive solutions of a problem.

D.11 Coding Theory, Compression and Cryptography: Understand coding of

alphabets and simple encryption methods.

D.11.1 Use integer functions to encode alphabets and to create error-checking

correcting codes.

D.11.2 Use permutations, combinations of digraph encoding and affine transformation
and hash functions, to create encryption codes.

D.11.3 Demonstrate understanding of asymmetric public key cryptography algorithms
such as RSA and Diffie-Hellman.

D.11.4 Demonstrate understanding of error-detecting and error-correcting codes and

data compression through Huffman codes.

D.12 Algorithm Design: Understand methods of algorithm design and its

relationship to data structures.

D.12.1 Design algorithms using recurrence or iteration.

D.12.2 Design algorithms using divide-and-conquer.

D.12.3 Design algorithms using recursion.

D.12.4 Evaluate the efficiency of an algorithm including the order of complexity of

algorithms.

