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CS160 Lab #8: Problem Solving (continued) & Software Engineering 

General 
Read through the “Background” material below and the online tutorials, then download the Lab 
#8 question set and answer the questions. Turn in the questions using the instructions posted 
on the class web site. 
 
For ALL Word processing documents, you must submit your documents in one of the following 
formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open 
Document (used by the freely available Open Office suite). They will be returned ungraded if 
submitted in any other format. 

  

Concepts 
This lab continues our exploration of problem solving techniques and programming.  You will 
learn a method known as “Divide and Conquer” in this lab.  Additionally, we will get an 
overview of Software Engineering and the Software Lifecycle.   

 

Background 
Note: Original source of the background contained below is from the “CS160 Worksheets” by 
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch 
Fry (CS, Chemeketa Community College). 

 

 

Problem-Solving by Divide-and-Conquer methods 

 
Another problem-solving method that is often utilized in computer science is called divide-
and-conquer.  In this paradigm, a problem is repeatedly divided into smaller and smaller sub-
problems, until the solution to individual sub-problems becomes obvious and are each solved.  
The solutions to these sub-problems are then re-combined to form a solution to the original 
problem.  Divide-and-conquer algorithms often require fewer steps than greedy algorithms 
when solving the same problem.     
  
For example, suppose we want to arrange the following words in order from longest to 
shortest:  

“desire   to   latent   sometimes   go   misfortune   awakens   overwhelming   on” 
One method that would surely work is to apply a greedy method called selection sort.  In this 
method we seek to find the longest word in the group, and once that is accomplished, we put 
it in the first position.  Then the second longest word is determined and put in the second 
position and so on. 
 
Here is how selection sort would sort the words from longest to shortest. 
 
First, it would search the list for the longest word: 
 

 desire   to   latent   sometimes   go   misfortune   awakens   overwhelming   on 
 
The longest word is “overwhelming,” so it would swap “desire” and “overwhelming.” 
 

 overwhelming   to   latent   sometimes   go   misfortune   awakens   desire   on 
 
In the second iteration, it would search the remainder of the list for the longest word: 
 

 overwhelming   to   latent   sometimes   go   misfortune   awakens   desire   on 
 
The longest word found is “misfortune,” so it would swap “to” and “misfortune.” 
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CS160 Lab #8: Problem Solving (continued) & Software Engineering 
 

 overwhelming   misfortune   latent   sometimes   go   to   awakens   desire   on 
 
The algorithm would continue in this fashion until the list of words is completely sorted: 
 

 overwhelming   misfortune   sometimes   awakens   latent   desire   to   go   on 
   
Certainly the selection sort algorithm is effective—it sorts the words correctly—but is it 
efficient? To determine how efficient the selection sort algorithm is, we need to think about 
how many times it compared a pair of words. During the first step, the number of 
comparisons carried out was eight—one less than the number of words in the list. At the next 
step, there were seven comparisons, and six at the next, and so on.  In general, if there are 
n objects in a list to be compared, there will be (n – 1) comparisons during the first step of 
the selection sort process, (n – 2) during the second step, and so on until only 1 comparison is 
made at the (n – 1)st  and last step of the process.  In general, if the list contains n elements, 
the number of comparisons being made using the selection sort algorithm is:  (n – 1) + (n – 2) 
+  · · ·  + 3 + 2 + 1.   
 
This type of sum occurs so frequently in computer science that we’ll briefly divert our 
attention to understanding its features.  We would like to have a formula so that regardless 
of the value of n, we can always quickly find the result of adding the first n natural numbers:  
1 + 2 + 3 + · · · + (n – 1) + n.  When n is small, say 3, the sum is trivial:  1 + 2 + 3 = 6.  But 
what if n is 30,000?  It would be a waste of time to do 29,999 additions, even with a 
calculator or computer, because there is a simple formula that will do the job.  One way to 
understand this formula is to look at a geometric argument.  Suppose we have an arbitrary n 
by n square made up of smaller squares of side length 1.  In total there would be n2 of the 
smaller squares—n rows and n columns (see figure below with n = 6).  To model the desired 
sum geometrically we could fill in the first square of the first row, the first two squares of 
the second row, and so on until we fill in the first n squares of the nth row (i.e. we would fill 
in each square of the last row of squares).  The area of the shaded squares is equal to 1 + 2 + 
3 + · · · + (n – 1) + n, the exact sum in which we are interested.  Drawing a diagonal from the 
top left corner to the bottom right corner will split the n by n square exactly in half, so that 
the area to the left of the diagonal is n2/2.  But there is still some shaded area that has not 
been counted—the n half-shaded squares.  The total area of the half-shaded squares is 

n/2.Thus the entire area of the shaded squares is
n2

2
+

n

2
=

n 2
+ n
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CS160 Lab #8: Problem Solving (continued) & Software Engineering 
Another way to arrive at this formula is to write the numbers in a list and then pair the first 
and last numbers, then the second and second to last, and so on, as shown in the figure 
below.   
 
 
 
 
 
 
 
 
 
 
 
Each of these pairs adds to (n + 1), and if n is one can see that there are n/2 pairs that have 

been matched up.  Thus the sum of the pairs is (n +1) ⋅
n

2
=

n2
+ n

2
=

n n +1( )

2
, which is the 

same result obtained using the geometric argument.  
 
 
We can now see that the sum  

(n – 1) + (n – 2) + · · · + 3 + 2 + 1 = i
i=1

n−1

∑ =
(n −1)

2
+ (n −1)

2
=

n2
− n

2
.   

 
Since the dominating (largest order) term in this sum is n2, we say that the selection 
sort algorithm has order n2, and often write this fact in the following way:  O(n2).   
 

Merging Lists and the Merge Sort Algorithm 
 
At this point we will focus on a different and more efficient way of sorting a list of objects.  
The algorithm that we will describe uses the divide-and-conquer problem-solving strategy.  
To begin, we introduce the idea of merging two lists that have already been sorted.  For 
example, the two numerical lists that follow have each been sorted from least to greatest:   
 

5   13   27   32   and   8   12  17  20 
 

Merging these two lists into one in which all eight numbers have been sorted will begin, as 
you might expect, by comparing the first numbers of each list—in this case 5 and 8.  Once 
these numbers have been compared (and the lesser number, 5, is placed in the first position 
of the merged list) the second number in the first list—13—is compared with the first number 
in the other list.  The lesser number, 8, takes its place in the second position of the merged 
list and the next comparison, between the second numbers in both lists, is made.   (See the 
diagram below for a complete illustration of this example.) 
 
This process will go on until one of two things happens:  the last number in one of the lists is 
compared to, and determined to be smaller than, a number from the other list; or the last 
two numbers in each list are compared.  In the best-case scenario, the last number in one of 
the lists—say list A—is smaller than the first number of the other list—call it list B.  In this 
case we will make four comparisons—comparing each of the numbers in list A with the first 
number in list B.  Once the last number in list A has been compared with, and is determined 
to be smaller than, the first number in list B, no other comparisons are necessary, for list B is 
already in order.  At this point list B is simply copied and the two lists have been merged 
after only ½·n comparisons.   
 

1   +   2   +   3   +   ·  ·  ·    +   (n - 2)   +   (n - 1)   +   n 
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CS160 Lab #8: Problem Solving (continued) & Software Engineering 

 
 
 
In the worst-case scenario, the merging process ends with the last numbers from list A and 
list B being compared.  In this case there will have been (n – 1) comparisons.  In general, if n 
is even, it will take at most (n – 1) comparison to merge two lists of size n/2 as we shall 
demonstrate below.     
 
We will now apply the divide-and-conquer paradigm to the general problem of sorting a large 
list of numbers.  The process that we will outline below is called the merge sort algorithm.  
For sake of example, let’s suppose we have a list of 1024 numbers.    We will view the list as 
1024 sorted lists of size and note that our objective is to obtain one sorted list of size 1024. 
 
At the first step we will merge the first two single ‘sorted lists’ (i.e. the single numbers 
viewed as individual lists of size one) into a list of size two.  This will require only one 
comparison (we’ve only got two numbers to compare).  We’ll then do the same with the next 
pair of numbers, and so on until there are 512 sorted lists of size two. With one comparison 
per merge and (½)·(1024) = 512 merges, there will be 1·512 = 512 comparisons at the first 
step.  
 
At the second step we will merge two sorted lists of size two into a sorted group of four 
numbers.  There will be at most 3 comparisons per merge (n – 1 where n = 4 = number of 
objects being merged) and (½)·(512) = 256 merges.  So during the second step there will be 
no more than 3·256 = 768 comparisons made.  Recall we may make fewer comparisons, but 
we’ll be conservative and assume the worst-case scenario.  We will look at one more step to 
establish the pattern:  during the third step—in which we will merge sorted groups of four 
numbers into sorted groups of eight numbers—there will be at most 7 comparisons per merge 
and (½)·(256) = 128 merges.  Thus at the third step we are guaranteed to complete all 
merges using no more than 7·128 = 896 comparisons.   
 
In general, if we begin with an unsorted list of n numbers, at the kth step of the merge-sort 

process, there will be at most 2k – 1 comparisons per merge and 
n

2
k  merges.  Thus there will 

be less than 2
k
⋅

n

2
k

= n  comparisons.   

 
 
An applet that can compare various sort algorithms is found here: 
 
 http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/SortingAlgorithms.html.  

 
1. Change the sorting method on the left from Quick Sort to Selection Sort.  

Change the sorting method on the right from Bubble Sort to Merge Sort. 
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CS160 Lab #8: Problem Solving (continued) & Software Engineering 
2. With your mouse, drag the blue circle in the Number of Elements box until the 

number of elements is 16.  Choosing this number of elements will help illuminate 
the merge sort process.    

3. At a steady rate, continually click the step button, which will move the sorting 
process along a step at a time.  Once you get the basic idea, you can click the 
play button, which will move the process along at a quicker pace.  If you want to 
slow the process down again, simply click the pause button and then the step 
button. 

4. In the Selection Sort demonstration, the red bar represents the current position 
that is being filled and the moving yellow bar represents the bar-by-bar 
comparisons that are being made to determine the shortest remaining bar.    

5. In the Merge Sort demonstration, bars 1 and 2 are merge-sorted, followed by the 
merge-sorting of bars 3 and 4.  Now those two ‘sorted lists’ are merged-sorted.  
Thus we have an ordered list of bars 1 – 4.  The next step the applet takes is to 
merge-sort the 5th and 6th bars and then the 7th and 8th bars.  These two sorted 
lists of size two are now merged—forming another sorted list of four bars 
(representing bars 5 – 8).  The two lists of four bars are merge-sorted into one list 
of eight bars.  This same process is now applied to bars 9 – 16, until they have 
been sorted from shortest to tallest.  The last step is to merge the two sorted 
lists of 8 bars, the first one consisting of bars 1 – 8 (in order from shortest to 
tallest) and the last one consisting of bars 9 – 16 (in order from shortest to 
tallest). 

6. Now change the number of elements to be sorted and compare the algorithms 
again. 

 
Another piece of information we need to know is how many steps there are going to be in the 
merge sort process.  In our example of 1024 words, we can ask this question:  How many 
times will we decrease the number of sorted lists in half (recall we started with 1024 lists of 
size one, and then reduced these to 512 lists of size two, and so on) before we get to one 
sorted list.  The nature of this problem suggests we use the log function, as log2(n) can be 
defined as the number of times the quantity n can be cut in half until it has been reduced to 
the value 1.  So log2(1024) = 10, and we know that there will be 10 steps involved in reducing 
1024 sorted lists of size one to one sorted list of size 1024.  Recall that at each step there are 
less than n comparisons which means we are guaranteed to be able to sort the list of size 
1024 by using fewer than 10,240 comparisons.  This is significantly less than 523,776, which is 
the number of comparisons required for accomplishing the same task using the greedy 
selection sort method.    
    
In general, if there are n words to be sorted, there will be log2(n) steps and no more than n 
comparisons at each step.  So we are guaranteed that there will be less than n·log2(n) 
comparisons made over the course of the entire process.  In other words the merge sort 
algorithm is O(n·log n). As was mentioned earlier, the selection sort algorithm is O(n2).   

 

 


