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General
Read through the “Background” section below, then copy and paste the questions out of the “Assignment” section into your word processor and answer the questions. Turn in the questions using the instructions posted on the class web site.  

At the top of the every document that you create (word processing or source files) include:

// Your name
// CS-160, Lab #x   (replace the X with the Lab #)
// xxxx Term, 20xx   (i.e. Winter Term, 2009)

For ALL Word processing documents, you must submit your documents in one of the following formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open Document (used by the freely available Open Office suite). They will be returned ungraded if submitted in any other format.

Concepts
The purpose of this lab is to give you an introduction to some of the most fundamental operations of computational systems: the basic electronics of logic gates and combinatorial circuits and an introduction to binary representations.

Background
Note: Original source of the background contained below is from the “CS160 Worksheets” by
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch
Fry (CS, Chemeketa Community College).

Logic Gates

In order to add, subtract, and compare numbers, computers manipulate 0s and 1s. Operations that manipulate individual 0s and 1s are called Boolean operations. A logic gate is a mechanism that performs a Boolean operation by taking one or more 0s and 1s as inputs and producing a 0 or 1 as output.

The Boolean operations we will study are either unary or binary.  A unary operation has a single input, and a binary operation has two inputs. Finding the output of a logic gate is simple, once a few principles are understood.
 


			
     
 A unary operation (one input).	                                             A binary operation (two inputs).


The only unary Boolean operation is the NOT function.  The NOT gate returns the complement of the operand.  An input of 1 results in an output of 0; conversely, an input of 0 results in an output of 1.  The latter of the two possibilities for the NOT operation is shown below. 

[image: ]
The NOT gate returns the complement of the input.

The most common binary Boolean operations include AND, OR, and XOR (short for ‘exclusive OR’).  If at least one of the two operands is 1, the OR operation gives an output of 1.  The output of the XOR operation is 1 when exactly one of the operands is 1.  The AND operation returns 1 only if both inputs are 1.  There are four possible combinations of input pairs for each of these three gates.  One of these combinations for each gate is shown below.


[image: ]

                                  The OR gate returns 1 when at least one of its inputs is 1.

[image: ]
The XOR gate returns 0 when both operands are 1 or both operands are 0.


[image: ]

 When at least one of the operands is 0, the output of the AND gate is 0.
	
Other logical gates can be formed by appending the NOT gate to any of the binary gates.  These gates are denoted by NAND (NOT AND), NOR (NOT OR), and XNOR (NOT XOR).  The output of these gates can be found by first determining the output of the binary gate and then using this output as the input of the NOT gate, as shown below.

 [image: ]

[image: ]
                         
The NAND gate is equivalent to an AND gate followed by a NOT gate.


The symbols that we have used above for the different logic gates are easily distinguishable and widely used, with one difference:  the name of the gate is not written inside the symbol.  Henceforth we will follow that practice.  The symbols for the seven logic gates are as follows:

	      AND               OR              XOR      NOT        NAND       NOR             XNOR
[image: ][image: ][image: ][image: ][image: ][image: ][image: ]

These are the symbols for the seven logic gates presented in this worksheet.



One way to represent a Boolean function is through the use of a truth table.  The first column(s) give all possible input combinations.  The values in the last column(s) represent the output of the function given the inputs that precede it.  Such tables are called truth tables.  An example of the truth tables for the NOT and OR operations are shown below (I1 stands for the first input, I2 stands for the second input and O represents the output):

[image: ][image: ]









Truth table for the NOT gate.                                          Truth table for the OR gate.



An applet that will help you become more familiar with the basic logic gates can be accessed at 

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/LogicGates.html. 

1. Make sure the option 1 Gate is selected.
2. Double-click on the rectangle and choose one of the logic gates available.
3. Next change the values of the inputs by clicking on the values.
4. Repeat steps 2 and 3 for all the logic gates.
5. Notice than when gate is selected, a table appears to the right.  This is a truth table for the selected gate.  Once inputs have been selected, the row that corresponds to these inputs is highlighted.



Combinatorial Circuits

An arrangement of more than one logic gate is called a combinatorial circuit. The gates in a circuit are linked. Often it is the case that one gate has an output that serves as the input for one or more gates within the circuit.  The use of logical gates and combinatorial circuits play a fundamental role in how computers operate. An example of a combinatorial circuit is shown below.  Notice that in this circuit the lower input serves as the input for the NOT gate as well as the second input of the XNOR gate. Note that we normally label Inputs and Outputs from 0,1,2.. etc. from top to bottom; and generally try to show inputs on the left, outputs on the right. 

[image: ]
An example of a combinatorial circuit.



Use the applet at: 

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/LogicGates.html 

to help you understand more effectively the ideas behind combinatorial circuits.  

1. Select the option labeled 2 Gates.
2. Double click on each rectangle and select a logic gate for each one.  
3. Change the inputs to investigate the nature of the circuit.  
4. Create a different circuit by selecting different gates and investigate its nature.  Notice how the truth table changes as the logic gates are changed.
5. Select the options for 3 Gates (2 inputs), 3 Gates (4 inputs), and 4 Gates, and repeat steps 2 – 4.


Binary Number Systems

Digital computers store information in the form of 0s and 1s.  An important use of digital computers is performing computations. That means we must be able to store numbers as patterns of 0s and 1s. The binary number system is a way of representing integers using only 0s and 1s.

Before we explore the binary system, it will be helpful to review the number system we are more familiar with—the decimal system.  The decimal, or base-ten, number system uses ten digits—0 through 9.  The position of each digit in a number is associated with a specific power of ten. The rightmost position in a decimal representation has a value of 100 (or 1), followed on the left by 101 (or 10), then 102 (or 100), then 103 (or 1000), and so on.  For the number represented in decimal form by 247, the digit 7 is associated with 100, the 4 with 101, and the 2 with 102.  The value of the representation (e.g., 247) can be found by multiplying each digit by its position’s value:  the representation 247 has the value (2·102 + 7·101 + 4·100). 
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			 The value of the decimal representation 247.


The binary number system has a structure similar to the decimal system.  In the binary, or base-two, system there are only 2 digits—0 and 1. The position of each bit (binary digit) is associated with a specific power of 2—20, 21, 22, 23, etc. (moving from right to left).  For example, the decimal equivalent of the binary representation 1101 can be found by multiplying each digit by its position value:  1·23 + 1·22 + 0·21 + 1·20 = 13.  Therefore, the binary number 1011 is equivalent to the decimal number 13.    
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The binary number 1101 is equivalent to the decimal number 13.


When we express a binary number verbally, it is helpful to say the digits in order from left to right.  For example, as opposed to “one thousand one hundred and one,” the binary number 1101 would be pronounced “one-one-zero-one.” 

As a computer science major, you need to become adept with the binary number system.  The following activity will help you achieve this goal.  


Practice Exercise (for practice):  Fill in the following blanks with the binary equivalent of the decimal number given.  To make sure you are on track, some of the binary representations have been filled in for you .

	Binary
	Dec.
	Binary
	Dec.
	Binary
	Dec.
	Binary
	Dec.

	__________
	1
	__________
	26
	__________
	51
	__________
	76

	__________
	2
	__________
	27
	__________
	52
	__________
	77

	__________
	3
	___11100_
	28
	__________
	53
	__________
	78

	__________
	4
	__________
	29
	__________
	54
	__________
	79

	__________
	5
	__________
	30
	__________
	55
	__________
	80

	__________
	6
	__________
	31
	__________
	56
	__________
	81

	__________
	7
	__________
	32
	__________
	57
	__________
	82

	__________
	8
	__________
	33
	__________
	58
	__________
	83

	__________
	9
	__________
	34
	__________
	59
	__________
	84

	__________
	10
	__________
	35
	__________
	60
	_ 1010101_
	85

	__________
	11
	__________
	36
	__________
	61
	__________
	86

	__________
	12
	__________
	37
	__________
	62
	__________
	87

	___1101__
	13
	__________
	38
	__________
	63
	__________
	88

	__________
	14
	__________
	39
	__________
	64
	__________
	89

	__________
	15
	__________
	40
	__________
	65
	__________
	90

	__________
	16
	__________
	41
	__________
	66
	__________
	91

	__________
	17
	__________
	42
	__________
	67
	__________
	92

	__________
	18
	__________
	43
	__________
	68
	__________
	93

	__________
	19
	__________
	44
	__________
	69
	__________
	94

	__________
	20
	__________
	45
	__________
	70
	__________
	95

	__________
	21
	__________
	46
	_ 1000111_
	71
	__________
	96

	__________
	22
	__________
	47
	__________
	72
	__________
	97

	__________
	23
	__________
	48
	__________
	73
	__________
	98

	__________
	24
	__________
	49
	__________
	74
	__________
	99

	__________
	25
	__________
	50
	__________
	75
	__________
	100


 

Critical Thinking: (Practice questions, this will help with the assignment)

1) What is the binary representation of the decimal value 17?
2) What is the binary representation of the decimal value 34?
3) What is the binary representation of the decimal value 68?
4) What is the binary representation of the decimal value 22?
5) What is the binary representation of the decimal value 44?  
6) What is the binary representation of the decimal value 88?




Converting Between Binary and Decimal Representation

There are two common methods for converting numbers from their decimal to binary representations. 

One method of finding the binary equivalent of a decimal number makes use of one’s knowledge of the powers of 2—2, 4, 8, 16, 32, 64, 128, etc.  The procedure begins by determining the greatest power of 2 less than or equal to the decimal number being converted.  For example, when converting 68 into its binary equivalent, we notice that
64 = 26 is the largest power of 2 less than 68.  We subtract this power of 2 from the original number, and repeat the process:  68 – 64 = 4, so what is the largest power of 2 less than or equal to 4?  The answer is 22 = 4.  We stop when the difference between the number and the power of 2 is zero.  So we have determined that 68 consists of one 64 and one 4. That means the binary representation of 68 is found by creating a string of bits that has a 1 in the places representing 64 and 4, and a 0 everywhere else: 1000100.

Converting a binary number into its decimal equivalent is related to the method just described.  We simply add up the powers of 2 represented by the 1s in the binary representation.  For example, the number 1011001 can be converted to a decimal representation as follows:  

1·26 + 0·25 + 1·24 + 1·23 + 0·22 + 0·21 + 1·20 =  64 + 16 + 8 + 1 = 89. 

An alternative method involves successively dividing by 2.  The quotient at each step will always be a whole number with a remainder of 0 or 1 (think about why this is true).  If the remainder is recorded but not included in the next step of the division, the process will continue until the quotient is 0.  The string of remainders (going from last to first) is the binary representation (written left to right) of the decimal number.  An example is shown in the next figure. 
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The division method for converting decimal numbers into their binary representation is shown here.  The remainders are recorded and become the digits of the binary number.  This example shows 68 base ten is 1000100 base 2.


Use the applet  at:  

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/NumberFormats.html 

to help you clarify your understanding Binary, Octal, Decimal and Hexadecimal number systems and conversions.  

Assignment Instructions
Answer the following questions.  Please copy and paste the questions and diagrams below into your editor (use the I-bar tool in Acrobat Reader to do this) and TYPE your answers below each question.


Logic Gates:

Q1:  Explain in your own words the difference between the XOR gate and the NOR gate.

Q2:  Which pairs of input values will yield an output value of 1 for the NAND gate?  Which pairs of input values will yield an output value of 0 for the AND gate?  

Q3:  Give the truth tables for the Boolean operations: NOT, AND, OR, NAND, NOR, XOR.


Combinatorial Circuits:

[image: ]Q4:  Construct a truth table for the combinatorial circuit drawn below.










Q5:  For each of the circuits below, identify the pair(s) of input combinations that produce an output of 1.  Show the input pairs in this format: (I0, I1), so a possible pair would be (0,0).
[image: ]
	


                A:




[image: ]

                           
	       B:











Q6:  Find a combination of gates, using only AND, NAND, OR and NOR gates—but not necessarily all of them, that will make the following circuit equivalent to the XOR gate. (Hint: Use the practice applet to help solve this)


[image: ]

[image: ]Optional Challenge Question:  Create a combinatorial circuit with three inputs (I1, I2, and I3) and two outputs (O1 and O2) that has as its truth table the one shown below.  For what purpose could this circuit be used? 


Binary Number Representations:

Q7:  Look for a relationship between the binary representations of 17, 34, and 68. The same relationship should hold between the binary representations of 22, 44, and 88. What is the relationship? What is the equivalent relationship in the decimal system?

Q8:  How many bits are there in the binary representation of the decimal value 100?  What is the largest decimal number you can represent with that number of bits? 

Q9: Convert the decimal numbers 14 and 49 into their 8-Bit binary equivalents using the first method described above (greatest power of 2 less than or equal to the number). SHOW YOUR WORK THAT DOES THE CONVERSION! 

Q10: Convert the decimal numbers 19 and 57 into their 8-Bit binary equivalents using the second method described above (successive divisions by 2). SHOW YOUR WORK THAT DOES THE CONVERSION!   

Q11: Using your favorite method, convert the decimal numbers 161 and 221 into their 8-Bit binary equivalents.



Q12:  Convert each of the following binary numbers into their decimal equivalent. 

1011000110                              1100101101110	                10000001111


Optional Challenge Question:  Professor I. M. Smart has invented a new kind of computer storage device in which fundamental unit of information is a trit (trinary digit).  A trit takes on one of the three values 0, 1, or 2.  

In your own words explain how to convert a number from its trinary representation to its decimal representation.  Also explain how to convert a decimal number to its trinary equivalent. Finally, think about whether using a trit as the fundamental storage unit in a computer would result in any change in the representational capability (meaning what values can be represented) of a computer. Explain your thoughts on this. 
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