

Chemeketa Community College Page 1 of 8

CS-160 Lab #4: Machine Language

General
Read through the “Background” material below, then download the Lab #4 question set and
answer the questions. Turn in the questions using the instructions posted on the class web site.

For ALL Word processing documents, you must submit your documents in one of the following
formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open
Document (used by the freely available Open Office suite). They will be returned ungraded if
submitted in any other format.

Concepts
This lab helps you to gain an understanding of program execution flow (the CPU execution cycle)
and what the the language of the CPU (machine language) is like.

Background
Note: Original source of the background contained below is from the “CS160 Worksheets” by
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch
Fry (CS, Chemeketa Community College).

Machine Languages

In this worksheet we will explore how the major components of a computer work together to
perform simple tasks. We begin with the architecture of an extremely primitive computer,
which is a slight modification of the computer described in the ninth edition of J. Glenn
Brookshear’s Computer Science: An Overview, Addison-Wesley (2007).

The central processing unit (CPU) is the circuitry that controls how information (in the form of
bit patterns) is manipulated and stored. The CPU is made up of two parts—the
logic/arithmetic unit and the control unit. The logic/arithmetic unit has the ability to perform
simple mathematical calculations in addition to other operations. The control unit contains
many individual cells, called registers, of which there are two types: general-purpose
registers and special-purpose registers. The function of general-purpose registers is to
temporarily store bit patterns that will be manipulated by the logic/arithmetic unit. There
are two special-purpose registers: the instruction register and the program counter. The
instruction register contains the instruction the control unit is currently carrying out. The
program counter contains the address of the next instruction to be performed.

Another critical part of computer architecture is the main memory. The main memory consists
of cells. Each cell has a unique address and contains 8 bits. These bits may correspond to a
program instruction or to a data value. Bit patterns are transferred to and from the main
memory to the CPU through a series of wires called a bus.

A Sample Machine

We will discuss how the CPU and main memory of a simple computer work together to perform
basic functions. Our machine has 16 general-purpose registers, numbered in hexadecimal
notation from 0 to F. Main memory consists of 256 cells—each having as its address a
hexadecimal number between 00 and FF, as shown in the diagram below.

Computer programmers typically write programs in a high-level language, but in order for
computer programs to be executed on a computer, they must be translated into low-level
instructions called machine language. We will deal with the operations of our computer at the
machine language level. In our simple computer, a machine instruction is a sequence of 16

Chemeketa Community College Page 2 of 8

CS-160 Lab #4: Machine Language
bits that directs the CPU to perform a particular task. An example of a machine instruction
may be 0010 1101 0011 1100. We’ll use hexadecimal notation to simplify the reading and
writing of these instructions. In this system the example instruction above would be written
2D3C. We’ll now explain what purpose each of these four digits has in the machine language.

The first hexadecimal digit (2 in our example) in the machine instruction is called the
operation code, or op-code, for short. The digit in the op-code field indicates which basic
function is to be performed. These basic functions can be classified into three categories:
data relocation, arithmetic/logic, and control. We will discuss selected functions from each of
these categories.

An important data relocation function is LOAD. There are two types of LOAD function. One of
the LOAD instructions copies a value from the main memory and puts it into a specified
general-purpose register. The other kind of LOAD function —distinguished from the previous
LOAD function by a different op-code (see below) — puts a constant value into a specified
general-purpose register. Another data relocation function, MOVE, copies a value from one
register and puts it into another register. The STORE function copies a value from a register
and writes it into a specific location in the main memory.

There are two ADD functions in the computer’s arithmetic/logic repertoire. One ADD function
adds integers represented in two’s complement notation. The other ADD function adds two
floating-point numbers. There are also logical functions that the CPU can perform on bit
patterns. For example, the NOT function returns the complement of the number that is given
to it. Other examples of logical functions are described below.

One of the control functions the computer utilizes is the JUMP function. In the normal
sequence of events, the computer executes instructions in order; the program counter
advances from 0 to 2 to 4, and so on. The JUMP instruction may set the program counter to an
arbitrary address.

Chemeketa Community College Page 3 of 8

CS-160 Lab #4: Machine Language

One JUMP occurs when the value in specified register is equal to the value in register 0. The
second JUMP occurs when the value in a specified register is less than zero. Another control
instruction is the HALT command, which causes the execution of the program to stop.

For our purposes, each of these (and several other) commands has been assigned a specific
hexadecimal digit, as shown in the Op-Code portion in the above table. Next to each op-code
in the table is a description of the operand that provides details necessary for the instruction
to be carried out.

Op-code Operand Description of Function Example

1 RXY
LOAD bit pattern found in memory

cell XY into register R.

17D2 loads bit pattern found in

memory cell D2 into register 7.

2 RXY
LOAD the bit pattern XY into register

with address R.

2D3C loads the bit pattern

00111100 into register D.

3 RXY
STORE the bit pattern found in the

register R in memory cell XY.

3A03 stores the bit pattern in

register A into memory cell 03.

4 0RS
MOVE (copy) bit pattern from register

R to register S.

403F copies bit pattern in register 3

into register F.

5 RST

ADD integers in registers S and T

(two’s complement form) and place

result in register R.

5B64 adds integers in registers 6

and 4; puts result in register B.

6 RST

ADD floating-point numbers in

registers S and T and place result in

register R.

6AE1 adds the floating point

numbers in registers E and 1; puts

result in register A.

7 RST

Combine bit pattern in register S and

register T using the OR operator and

place result in register R.

7D29 combines bit patterns found

in register 2 and 9 using the OR

operator and places the result in

register D.

8 RST

Combine bit pattern in register S and

register T using the AND operator and

place result in register R.

81F2 combines bit patterns found

in register F and 2 using the AND

operator and places the result in

register 1.

9 RST

Combine bit pattern in register S and

register T using the EXCLUSIVE OR

operator and place result in register R.

94C3 combines bit patterns found

in register C and 3 using the XOR

operator and places the result in

register 4.

A R0X
ROTATE bit pattern in register R to

the right X times.

A907 rotates bit pattern in register 9

to the right 7 times.

B RXY

JUMP to instruction located in

memory cell XY IF the bit pattern in

register R is EQUAL to bit pattern in

register 0; otherwise continue to next

instruction.

BDA7 compares bit pattern in

register D with that in register 0. If

they are equal, program jumps to

instruction located in cell A7; if

they are not, the program moves to

the next instruction.

C 000 HALT the program’s execution. C000 causes program stop.

D RXY

JUMP to instruction XY IF the bit

pattern in register R is LESS THAN

ZERO; otherwise continue to next

instruction.

D18D skips to instruction located in

cell 8D if bit pattern in register 1

begins with 1; otherwise, the

program moves to the next

instruction.

E 0RS

NOT—negate each bit in pattern found

in register S and put resulting bit

pattern in register R.

E03C finds complement of bit

pattern in register C and puts the

result in register 3.

Chemeketa Community College Page 4 of 8

CS-160 Lab #4: Machine Language
In our example instruction (2D3C), the first hexadecimal digit 2 indicates that the machine is
to load a particular bit pattern. The other hexadecimal digits (D3C) in the instruction are
known as the operand. The letter D in this case represents the address of the register into
which the bit pattern will be loaded. The 3C signifies that the bit pattern to be loaded is
00111100. Taken together, the instruction 2D3C indicates the machine will load the bit
pattern 00111100 into the general-purpose register with address D.

Another example of an instruction is 87F2. The op-code 8 instructs the machine to combine
two bit-patterns into one using the AND function. The hexadecimal digits F and 2, tell us to
combine the bit patterns stored in those two registers and place them in register 7. For the
next few paragraphs we will assume that bit pattern 01101110 is in register F and the bit
pattern 11110011 is in register 2. To combine these two patterns into one using the AND
operation, we first stack one bit pattern on top of the other so each of the eight digits is
aligned:

 0 1 1 0 1 1 1 0

 1 1 1 1 0 0 1 1

Next we’ll start at the right (though this is arbitrary) and, according to rules of the AND
operation, place a one under this column of numbers if they are both one, and a zero if they
aren’t both one. The same procedure is applied to each of the remaining seven columns of
numbers, and the result is represented below:

 0 1 1 0 1 1 1 0

 AND 1 1 1 1 0 0 1 1

 0 1 1 0 0 0 1 0

The instruction 87F2 would combine 0110110 and 11110011 (which are the bit patterns in
registers F and 2, respectively) using the AND operation and put the resulting bit pattern,
01100010, into register 7.

The combining of two bit patterns into one can also be performed by other logical operators—
OR, XOR, etc. You may want to verify that the result of combining the bit patterns in
registers F and 2 using the OR operation will yield the bit pattern 11111111, while the
resulting bit pattern using the XOR operation is 10011101. The NOT operator requires only one
bit pattern and simply negates each of the bits in the pattern. For example, the instruction
E07F will place the bit pattern 10010001 in register 7, which you may also want to verify.

The ROTATE function rotates the bits in a bit pattern a certain number of positions, in a
circular fashion. For example, the instruction AF04 will rotate the bit pattern in register F
four positions to the right. If the original pattern is 01101110, the resulting bit pattern is
11100110, as shown below.

 0 1 1 0 1 1 1 0 ⇒ 1 1 1 0 0 1 1 0

 original byte rotated byte

In order to help you become more familiar with the intricacies of machine language, we will
walk through a few examples. First, let’s add two values that are stored in the main memory
and place the sum back in the main memory. Suppose 02 and 08 are the values of the bytes
stored in the main memory cells with addresses F0 and F1, respectively. Our objective is to
write a machine language program that adds these two values and places their sum in the main

Chemeketa Community College Page 5 of 8

CS-160 Lab #4: Machine Language
memory cell with address F2. The steps that we will need the computer to perform in order to
realize this objective are outlined below:

1. Load the value of the memory cell with address F0 into register 0.

2. Load the value of the memory cell with address F1 into register 1.

3. Add the values in register 0 and register 1 and place the result in register 2.

4. Store the value of register 2 into the memory cell with address F2.

5. Halt the program.

For each of the steps above, there is an associated two-byte instruction written in machine
language that the CPU can use. These instructions are:

10F0

11F1

5201

32F2

C000

We will now represent the changes that occur in the main memory and CPU as these
instructions are carried out at the machine level. Notice that the machine language
instructions are stored in the main memory in cells 00 to 09. As the CPU progresses through
the five instructions, watch the program counter, the instruction register, the effected
registers and main memory cells change accordingly.

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

F3F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

00

-- -- -- --

Chemeketa Community College Page 6 of 8

CS-160 Lab #4: Machine Language

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

02

1 0 F 0

0 2

F3F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

04

1 1 F 1

0 2

0 8

F3F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

06

5 2 0 1

0 2

0 8

A 0

F3F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

 OA

Chemeketa Community College Page 7 of 8

CS-160 Lab #4: Machine Language

There are a couple of items that should be noted. Since each instruction is two bytes long,
each line of instruction takes up two memory cells; consequently, the program counter only
identifies the first address of the cell containing the line of instruction. This address is always
an even number Also, due to space constraints, only those cells that are necessary for the
program are shown in the graphical representations. This convention will be used in the
following exercises.

In our final example we will illustrate the characteristic of one of the two JUMP functions in
our arsenal. We’ll begin by assuming that the value of register 0 is known to have the bit
pattern 06 and the value of register 5 is 0. Also, for the time being, we’ll assume the value of
the memory cell with address C3 is unknown. We’d like to subtract the value of C2 from 06,
the value in register 0, and place the result in the memory cell C3. If the value of C2 is also
06, the difference is clearly 0, and in this case we don’t want to have to run the rest of the
program. First we will create a list of instructions that will accomplish the objective. They
are as follows:

1. Load the contents of memory cell C2 into register 1.

2. JUMP to the last line of instruction if the value of C2 is equal to the value

in register 0; otherwise, move on to step three.

3. Load the value 00000001 into register 2.

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

08

3 2 F 2

0 2

0 8

A 0

F3A 0F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

CPU Main Memory

•

•

•

Registers

0

1

2

3

F

Program

Counter

Instruction

Register

Bus

Address Address

08

3 2 F 2

0 2

0 8

A 0

F3A 0F2

F10 80 2F0

0 0

F 2

0 1

F 1

F 0

08

06

04

02

00

09C 0

073 2

055 2

031 1

011 0

OA

 C 0 0 0

 OA

OA

Chemeketa Community College Page 8 of 8

CS-160 Lab #4: Machine Language
4. Compute the logical NOT of the bit pattern in register 1 and place the

result into register 3.

5. Add the integers in registers 2 and 3 as if they were in two’s complement

form and place the result in register 4.

6. Add the integers in registers 0 and 4 as if they were in two’s complement

form and place the result in register 5.

7. Store the value of register 5 in the memory cell with address C3.

8. End the program.

We’ll assume that these 8 machine instructions are located in the memory cells with addresses
00 through 0F. Here is the resulting machine language program.

1 1 C 2

B 1 D C

2 2 0 1

E 0 3 1

5 4 2 3

5 5 0 4

3 5 C 3

C 0 0 0

