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CS-160 Lab #2: Gates, Circuits and Binary Representations 
 

General 
Read through the “Background” material below, then download the Lab #2 question set and 
answer the questions. Turn in the questions using the instructions posted on the class web site.   
 
For ALL Word processing documents, you must submit your documents in one of the following 
formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open 
Document (used by the freely available Open Office suite). They will be returned ungraded if 
submitted in any other format. 

 

Concepts 
The purpose of this lab is to give you an introduction to some of the most fundamental 
operations of computational systems: the basic electronics of logic gates and combinatorial 
circuits and an introduction to binary representations. 

 

Background 
Note: Original source of the background contained below is from the “CS160 Worksheets” by 
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch 
Fry (CS, Chemeketa Community College). 

 

Logic Gates 
 
In order to add, subtract, and compare numbers, computers manipulate 0s and 1s. Operations 
that manipulate individual 0s and 1s are called Boolean operations. A logic gate is a mechanism 
that performs a Boolean operation by taking one or more 0s and 1s as inputs and producing a 0 
or 1 as output. 
 
The Boolean operations we will study are either unary or binary.  A unary operation has a single 
input, and a binary operation has two inputs. Finding the output of a logic gate is simple, once 
a few principles are understood. 
  
 

fA f(A)

   

f
A

f(A, B)
B

 
      
 A unary operation (one input).                                              A binary operation (two inputs). 
 
 
 
The only unary Boolean operation is the NOT function.  The NOT gate returns the complement 
of the operand.  An input of 1 results in an output of 0; conversely, an input of 0 results in an 
output of 1.  The latter of the two possibilities for the NOT operation is shown below.  
 
 

 
The NOT gate returns the complement of the input. 
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 The most common binary Boolean operations include AND, OR, and XOR (short for ‘exclusive 

OR’).  If at least one of the two operands is 1, the OR operation gives an output of 1.  The 
output of the XOR operation is 1 when exactly one of the operands is 1.  The AND operation 
returns 1 only if both inputs are 1.  There are four possible combinations of input pairs for each 
of these three gates.  One of these combinations for each gate is shown below. 
 
 

 
 
 
                                  The OR gate returns 1 when at least one of its inputs is 1. 
 
 

 
 

The XOR gate returns 0 when both operands are 1 or both operands are 0. 
 
 

 
 

 When at least one of the operands is 0, the output of the AND gate is 0. 
 

  
Other logical gates can be formed by appending the NOT gate to any of the binary gates.  These 
gates are denoted by NAND (NOT AND), NOR (NOT OR), and XNOR (NOT XOR).  The output of 
these gates can be found by first determining the output of the binary gate and then using this 
output as the input of the NOT gate, as shown below. 
 

  
 

 
                          

The NAND gate is equivalent to an AND gate followed by a NOT gate. 
 
 
The symbols that we have used above for the different logic gates are easily distinguishable and 
widely used, with one difference:  the name of the gate is not written inside the symbol.  
Henceforth we will follow that practice.  The symbols for the seven logic gates are as follows: 
 

       AND               OR              XOR      NOT        NAND       NOR             XNOR 

 
 

These are the symbols for the seven logic gates presented in this worksheet. 
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One way to represent a Boolean function is through the use of a truth table.  The first 
column(s) give all possible input combinations.  The values in the last column(s) represent the 
output of the function given the inputs that precede it.  Such tables are called truth tables.  An 
example of the truth tables for the NOT and OR operations are shown below (I1 stands for the 
first input, I2 stands for the second input and O represents the output): 
 
 

                                              
 
 
Truth table for the NOT gate.                                          Truth table for the OR gate. 
 
 
 
An applet that will help you become more familiar with the basic logic gates can be accessed at  
 

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/LogicGates.html.  
 

1. Make sure the option 1 Gate is selected. 
2. Double-click on the rectangle and choose one of the logic gates available. 
3. Next change the values of the inputs by clicking on the values. 
4. Repeat steps 2 and 3 for all the logic gates. 
5. Notice than when gate is selected, a table appears to the right.  This is a truth table for 

the selected gate.  Once inputs have been selected, the row that corresponds to these 
inputs is highlighted. 

 

 

Combinatorial Circuits 
 
An arrangement of more than one logic gate is called a combinatorial circuit. The gates in a 
circuit are linked. Often it is the case that one gate has an output that serves as the input for 
one or more gates within the circuit.  The use of logical gates and combinatorial circuits play a 
fundamental role in how computers operate. An example of a combinatorial circuit is shown 
below.  Notice that in this circuit the lower input serves as the input for the NOT gate as well 
as the second input of the XNOR gate. Note that we normally label Inputs and Outputs from 
0,1,2.. etc. from top to bottom; and generally try to show inputs on the left, outputs on the 
right.  
 

 
An example of a combinatorial circuit. 
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Use the applet at:  
 

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/LogicGates.html  
 
to help you understand more effectively the ideas behind combinatorial circuits.   

 
1. Select the option labeled 2 Gates. 
2. Double click on each rectangle and select a logic gate for each one.   
3. Change the inputs to investigate the nature of the circuit.   
4. Create a different circuit by selecting different gates and investigate its nature.  Notice 

how the truth table changes as the logic gates are changed. 
5. Select the options for 3 Gates (2 inputs), 3 Gates (4 inputs), and 4 Gates, and repeat 

steps 2 – 4. 

 

Binary Number Systems 
 

Digital computers store information in the form of 0s and 1s.  An important use of digital 
computers is performing computations. That means we must be able to store numbers as 
patterns of 0s and 1s. The binary number system is a way of representing integers using only 0s 
and 1s. 
 
Before we explore the binary system, it will be helpful to review the number system we are 
more familiar with—the decimal system.  The decimal, or base-ten, number system uses ten 
digits—0 through 9.  The position of each digit in a number is associated with a specific power 
of ten. The rightmost position in a decimal representation has a value of 100 (or 1), followed on 
the left by 101 (or 10), then 102 (or 100), then 103 (or 1000), and so on.  For the number 
represented in decimal form by 247, the digit 7 is associated with 100, the 4 with 101, and the 2 
with 102.  The value of the representation (e.g., 247) can be found by multiplying each digit by 
its position’s value:  the representation 247 has the value (2·102 + 7·101 + 4·100).  
 

 

 

 

     
The value of the decimal representation 247. 

 

 
The binary number system has a structure similar to the decimal system.  In the binary, or 
base-two, system there are only 2 digits—0 and 1. The position of each bit (binary digit) is 
associated with a specific power of 2—20, 21, 22, 23, etc. (moving from right to left).  For 
example, the decimal equivalent of the binary representation 1101 can be found by multiplying 
each digit by its position value:  1·23 + 1·22 + 0·21 + 1·20 = 13.  Therefore, the binary number 
1011 is equivalent to the decimal number 13.     

 

 

 

 

 

 
   

 

 

The binary number 1101 is equivalent to the decimal number 13. 
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 When we express a binary number verbally, it is helpful to say the digits in order from left to 

right.  For example, as opposed to “one thousand one hundred and one,” the binary number 
1101 would be pronounced “one-one-zero-one.”  
 
As a computer science major, you need to become adept with the binary number system.  The 
following activity will help you achieve this goal.   
 
 
Practice Exercise (for practice):  Fill in the following blanks with the binary equivalent of the 
decimal number given.  To make sure you are on track, some of the binary representations 
have been filled in for you . 

 
Binary Dec. Binary Dec. Binary Dec. Binary Dec. 

__________ 1 __________ 26 __________ 51 __________ 76 
__________ 2 __________ 27 __________ 52 __________ 77 
__________ 3 ___11100_ 28 __________ 53 __________ 78 
__________ 4 __________ 29 __________ 54 __________ 79 
__________ 5 __________ 30 __________ 55 __________ 80 
__________ 6 __________ 31 __________ 56 __________ 81 
__________ 7 __________ 32 __________ 57 __________ 82 
__________ 8 __________ 33 __________ 58 __________ 83 
__________ 9 __________ 34 __________ 59 __________ 84 
__________ 10 __________ 35 __________ 60 _ 1010101_ 85 
__________ 11 __________ 36 __________ 61 __________ 86 
__________ 12 __________ 37 __________ 62 __________ 87 
___1101__ 13 __________ 38 __________ 63 __________ 88 
__________ 14 __________ 39 __________ 64 __________ 89 
__________ 15 __________ 40 __________ 65 __________ 90 
__________ 16 __________ 41 __________ 66 __________ 91 
__________ 17 __________ 42 __________ 67 __________ 92 
__________ 18 __________ 43 __________ 68 __________ 93 
__________ 19 __________ 44 __________ 69 __________ 94 
__________ 20 __________ 45 __________ 70 __________ 95 
__________ 21 __________ 46 _ 1000111_ 71 __________ 96 
__________ 22 __________ 47 __________ 72 __________ 97 
__________ 23 __________ 48 __________ 73 __________ 98 
__________ 24 __________ 49 __________ 74 __________ 99 
__________ 25 __________ 50 __________ 75 __________ 100 

  

 

Critical Thinking: (Practice questions, this will help with the assignment) 
 
1) What is the binary representation of the decimal value 17? 

2) What is the binary representation of the decimal value 34? 

3) What is the binary representation of the decimal value 68? 

4) What is the binary representation of the decimal value 22? 

5) What is the binary representation of the decimal value 44?   

6) What is the binary representation of the decimal value 88? 
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 Converting Between Binary and Decimal Representation 

 
There are two common methods for converting numbers from their decimal to binary 
representations.  
 
One method of finding the binary equivalent of a decimal number makes use of one’s 
knowledge of the powers of 2—2, 4, 8, 16, 32, 64, 128, etc.  The procedure begins by 
determining the greatest power of 2 less than or equal to the decimal number being converted.  
For example, when converting 68 into its binary equivalent, we notice that 
64 = 26 is the largest power of 2 less than 68.  We subtract this power of 2 from the original 
number, and repeat the process:  68 – 64 = 4, so what is the largest power of 2 less than or 
equal to 4?  The answer is 22 = 4.  We stop when the difference between the number and the 
power of 2 is zero.  So we have determined that 68 consists of one 64 and one 4. That means 
the binary representation of 68 is found by creating a string of bits that has a 1 in the places 
representing 64 and 4, and a 0 everywhere else: 1000100. 
 
Converting a binary number into its decimal equivalent is related to the method just described.  
We simply add up the powers of 2 represented by the 1s in the binary representation.  For 
example, the number 1011001 can be converted to a decimal representation as follows:   
 

1·2
6
 + 0·2

5
 + 1·2

4
 + 1·2

3
 + 0·2

2
 + 0·2

1
 + 1·2

0
 =  64 + 16 + 8 + 1 = 89.  

 
An alternative method involves successively dividing by 2.  The quotient at each step will 
always be a whole number with a remainder of 0 or 1 (think about why this is true).  If the 
remainder is recorded but not included in the next step of the division, the process will 
continue until the quotient is 0.  The string of remainders (going from last to first) is the binary 
representation (written left to right) of the decimal number.  An example is shown in the next 
figure.  

  
 

 

 

 

 

 

  

The division method for converting decimal numbers into their binary representation is shown here.  The 

remainders are recorded and become the digits of the binary number.  This example shows 68 base ten is 

1000100 base 2. 

 

 
Use the applet  at:   
 

http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/NumberFormats.html  

 
to help you clarify your understanding Binary, Octal, Decimal and Hexadecimal number systems 
and conversions.   
  

 

68 / 2 = 34  R 0 

34 / 2 = 17  R 0 

17 / 2 = 8    R 1 

  8 / 2 = 4    R 0 

  4 / 2 = 2    R 0 

  2 / 2 = 1    R 0 

  1 / 2 = 0    R 1 

1  0  0  0  1  0  0  = 68 (base 10) 

…
 


