

Chemeketa Community College Page 1 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement

General
Read through the “Background” material below, then download the Lab #2 question set and
answer the questions. Turn in the questions using the instructions posted on the class web site.

For ALL Word processing documents, you must submit your documents in one of the following
formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open
Document (used by the freely available Open Office suite). They will be returned ungraded if
submitted in any other format.

Concepts
This lab will give you an introduction to additional representation systems important to computer
operations: hexadecimal, and binary two's complement representations (for signed integers).

Background
Note: Original source of the background contained below is from the “CS160 Worksheets” by
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch
Fry (CS, Chemeketa Community College).

Hexadecimal Integer representations

In the previous worksheet we worked with a number system that is very important to computer
operation—the binary system. Another non-decimal number system that plays an important
role in computer science is the hexadecimal system (base 16 numbers). This number system
has 16 digits. Since there are only 10 Arabic numerals, we need additional symbols to
represent the values 10, 11, 12, 13, 14, and 15. We’ll let the letter A represent the value 10, B
represent the value 11, and so on, through F, which will represent the value 15.

An example of a hexadecimal number is 4C7. To compute the decimal value of this number, it
is important to know that each place value is associated with a power of 16 in the same way
the powers of ten are associated with the decimal system and the powers of two are associated
with the binary system. So 4C7 is equivalent to the following decimal number:

4·16
2
 + C·16

1
 + 7·16

0
 = 4·256 + 12·16 + 7·1 = 1024 + 192 + 7 = 1223.

Another number system that has application in the field of computer science is the octal
number (base 8) system. This system has 8 digits—0, 1, 2, 3, 4, 5, 6, and 7. As its positional
values, the octal system uses the powers of 8 (but you may have guessed that by now). Then
452 in the octal number system is equivalent to the decimal number:

4·8
2
 + 5·8

1
 + 2·8

0
 = 4·64 + 5·8 + 2·1 = 256 + 40 + 2 = 298.

We will not study octal numbers any further for this class (nor will they appear on exams) as
they are used less frequently than binary and hexadecimal representations.

The next activity will make you more familiar with hexadecimal numbers.

Chemeketa Community College Page 2 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement
Practice Exercise: Fill in the blanks with the appropriate hexadecimal and octal integers.

Decimal Hex. Decimal Hex.

1 __________ 51 __________
2 __________ 52 __________

3 __________ 53 __________
4 __________ 54 __________

5 __________ 55 __________
6 __________ 56 __________
7 __________ 57 __________

8 __________ 58 __________
9 __________ 59 __________

10 ____A_____ 60 __________
11 __________ 61 ____3D____
12 __________ 62 __________

13 __________ 63 __________
14 __________ 64 __________

15 __________ 65 __________
16 __________ 66 __________
17 __________ 67 __________

18 __________ 68 __________
19 __________ 69 __________

20 __________ 70 __________
21 __________ 71 __________
22 __ _16_ __ 72 __________

23 __________ 73 __________
24 __________ 74 __________

25 __________ 75 __________
26 __________ 76 __________
27 __________ 77 __________

28 __________ 78 __________
29 __________ 79 __________

30 __ __ ____ 80 __________
31 __________ 81 __________

32 __________ 82 __________
33 ___21____ 83 __________
34 __________ 84 __________

35 __________ 85 __________
36 __________ 86 __________

37 __________ 87 __________
38 __________ 88 __________
39 __________ 89 ____59____

40 __________ 90 __________
41 __________ 91 __________

42 __________ 92 __________
43 __________ 93 __________
44 __________ 94 __________

45 __________ 95 __________
46 __________ 96 __________

47 __________ 97 __________
48 __________ 98 __________
49 __________ 99 __________

50 __________ 100 __________

Chemeketa Community College Page 3 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement
Hexadecimal and Decimal Conversions

The procedure for converting numbers between the hexadecimal and decimal number systems

should have a familiar feel: to convert a decimal number to its hexadecimal equivalent, first
find the decimal number’s binary form, then arrange the bits from right to left into groups of
four. For example, to find the hexadecimal equivalent of the decimal 269, we first need to
obtain the binary form of 269. Using either of the methods present in the last worksheet, it
can be shown that the binary equivalent of 269 is 100001101. Regrouping this binary form into
strings of 4 bits (and adding three leading zeros on the LEFT) shows that the decimal 269 can be
written as 0001 0000 1101. These three strings correspond to the hexadecimal 1, 0, and D,
respectively. Therefore the hexadecimal equivalent of the decimal 269 is 10D.

To find the decimal equivalent of the hexadecimal integer 82C, we’ll first write this number in
a binary form: 1000 0010 1100 = 100000101100. Next, we add appropriate powers of two to
obtain the result: 1·211 + 1·25 + 1·23 + 1·22 = 2048 + 32 + 8 + 4 = 2092. Therefore the
hexadecimal number 82C has an equivalent decimal form of 2092.

Two’s Complement

Up to this point we have seen how it is possible to represent whole numbers (e.g. 0, 1, 2, 3, …)
using bits. But can one represent the integers (i.e., the counting numbers and their negative
counterparts) using the binary system? The answer to this question is yes. The most common
system for representing the integers is called two’s complement notation. Although most
computers today use a 32 bits to represent the integers, learning the two’s complement system
with that many bits would be too cumbersome. Therefore, we will study the features of the
two’s complement system using only 6 bits. As we shall soon see, using a 6-bit pattern, we are
able to represent all the integers from -32 to 31. It is important to note that the 6-bit pattern
and the 32-bit pattern are identical in structure, so studying the 6-bit pattern does have merit.
The 32-bit pattern is used in actual computers so that more integers (from -2,147,483,648 to
2,147,483,647) can be represented. The table below contains some of the representations of
the integers in a 6-bit two’s complement system.

Value

Represented Bit Pattern

31 011111

30 011110

… …

5 000101

4 000100

3 000011

2 000010

1 000001

0 000000

–1 111111

–2 111110

–3 111101

–4 111100

–5 111011

… …

–30 100010

–31 100001

–32 100000

Chemeketa Community College Page 4 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement

In any two’s complement system, the leftmost bit represents the sign (+ or –) of the integer.
For this reason, it is called the sign bit. The integer is negative when the sign bit is 1; the
integer is either zero or positive when the sign bit is 0. To represent the positive integers
leading zeros are added as needed to the left of the normal binary representation of the
integer. For example the number 23, which has a binary representation 10111, is represented
as 010111 in a 6-bit two’s complement system. Using a 6-bit two’s complement system, if the
uppermost (leftmost) bit is one, then the number is a negative value; the uppermost bit would
represent the value -25 (-32). The uppermost bit for a 7-bit two’s complement system
represents the value -26 or -64. For example, the number 1011001 can be converted to a
decimal representation as follows:

1·(-2
6
) + 0·2

5
 + 1·2

4
 + 1·2

3
 + 0·2

2
 + 0·2

1
 + 1·2

0
 = (-64) + 16 + 8 + 1 = (-39)

The easiest way to find the representation of a negative integer is to begin with its positive
counterpart. For example, to find the two’s complement representation for the integer –23, we
start with the two’s complement representation of 23: 010111. At this point there are several
methods that can be used to determine the 6-bit two’s complement representation of –23.
Both methods are described below.

The first method is referred to as the ‘copy and complement’ method. Beginning at the right,
the bits of the positive integer are copied up to and including the first 1 bit. In our example,
since the rightmost digit is 1, it is the only digit copied: __ __ __ __ __ _1_. The remaining
digits of the negative integer are the complement of the remaining bits of the positive integer.
The complement of a pattern is found by changing all 0s to 1s and all 1s to 0s. Thus, the
complement of the remaining portion of 23 is 1 0 1 0 0 1, and the integer –23 is written
101001 in two’s complement notation

Another method to find the negation of a number in two’s complement notation could be
named the ‘complement and add 1’ method. We obtain the complement of the original
number and add one to it. Using the same example of 23, we begin by determining the
complement of 010111, which is 101000. Adding 1 to this complement yields the same result as
before: 101001. Notice that regardless of what method is used, a positive integer—which
always begins with 0—will always have an opposite or negation that begins with a 1—and is
therefore negative.

Practice Exercise: Using either of the methods described above, find the negation of

each of the following numbers, represented in 6-bit two’s complement notation:

001110 negation = ____________________________________

010010 negation = ____________________________________

110011 negation = ____________________________________

000000 negation = ____________________________________

The ability to negate a number written in two’s complement form is crucial in finding the value
of any number written in a two’s complement system—for example what integer does the
number 110110 represent? The first task is to determine whether the integer is positive or
negative. This factor depends on the sign bit—the first bit of the string. If the first bit is 0,
finding the value of the number amounts to converting the number—which is basically in binary
form—into its decimal equivalent. If however the number’s sign bit is 1 (and therefore the

Chemeketa Community College Page 5 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement
number is negative), treating the number as if it is part of the binary system will not work.
Instead, we need to find the magnitude of the number and then place a negative sign in front
of this magnitude. And what is the magnitude of a negative number? It is that number’s
negation. In our example, the negation of 110110 is 001010 and this number corresponds to the
binary number 1010. This binary number has a decimal equivalent of 10, which means 110110
is equivalent to the negation of 10, or –10.

Practice Exercise: Convert these 6-bit, two’s complement integers into decimal form.

101000 __

110011 __

111111 __

Practice Exercise: Convert these decimal integers to 6-bit, two’s complement form.

 14 __

–27 __

–11 __

Binary and Two’s Complement Addition

One method of verifying that 101001 represents –23 is to add this string to the two’s
complement representation of 23 and check the result. If the sum is 0, which is the sum of 23
and –23, then we can be sure that 101001 is indeed the representation of –23.

Adding numbers written in two’s complement notation is equivalent to adding numbers in the
binary system. To add two binary numbers, one must be familiar with some basic base-2
addition facts, much like we must understand basic base-10 addition facts. Fortunately, there
are only a few facts to know!

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 10 + 1 = 11

The base-10 addition practice of ‘carrying a leftover’ is used when adding binary numbers.
Thus if the binary number 110 is added to the number 111, the result is 1101 as expected and is
described below.

1 1 0

1 1 1 +

1 1 0 1

1

1

1 1 0

1 1 1 +

0 1

1

Chemeketa Community College Page 6 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement

The 1 and 1 in the middle column add to The 1 and 1 in the leftmost column, combined

10 and the 1 (from 10) is carried to the with the 1 carried from the middle column, add to

leftmost column. 11. The leading 1 (from 11) is carried once again.

This method is analogous to addition in the decimal system. However, when adding numbers in
two’s complement notation, a change in the familiar method is necessary since the number of
bits of the sum must be equal to the number of bits in each of the addends. In other words,
when two numbers that are represented in a 6-bit two’s complement system are added
together, the result must also have exactly six bits. What happens when there is an extra 1
that, according to our decimal rule, should be put into a seventh bit position? The answer is
that it is simply discarded. (This may be counterintuitive, but it works!)

Using our knowledge of addition in the two’s complement system, we can now compute the
sum of 101001 and 010111, which as shown below does equal 0 (or in 6-bit two’s complement
notation 000000).

The sum of 101001 and 010111 is 00000, which means they are negations of each other.

One of the powerful features of a two’s complement system is that it contains the structure to
not only perform additions, but also subtractions. At the foundation of this process is the fact
that any subtraction problem can be rewritten as an addition problem [for example, 12 – 8 = 12
+ (–8)]. So if a computer has the ability to perform addition (i.e., if it has an adder) it will also
be able to perform subtraction. The subtraction problem 12 – 8 could be performed by writing
the integers 12 and –8 in two’s complement notation and then adding them. This addition is
shown below. Note that while we could have used a 6-bit (or 32-bit) system, a simpler 5-bit
system is sufficient, since the positive integer is less than or equal to 15 and the negative
integer is greater than or equal to -16.

A model of the subtraction problem 12 – 8 using two’s complement notation. The number 01100

represents 12 and 11000 represents –8. The expected result 4 will is evident after the leftmost ‘carried 1’

(created by the addition of 1 and 1 in the leftmost column) is discarded.

1 0 1 0 0 1

0 1 0 1 1 1 +

0 0 0 0 0 0

1

1

1 1 1 1

This carried 1

is discarded.

0 1 1 0 0

1 1 0 0 0 +

 0 0 1 0 0

1

1

This 1 is

 discarded.

Chemeketa Community College Page 7 of 7

CS-160 Lab #3: Hexadecimal and Two's Complement
Practice Exercise: Using a 6-bit two’s complement system, perform the following

addition and subtraction problems:

23 + 7 –13 – 18 28 – 19 16 + 20

Did you run into a problem with the last sum (16 + 20)? If you did everything correctly, your
sum should have been 100100. But this doesn’t make sense, since the sum of two positive
numbers is positive. The integer 100100 begins with a one and is therefore negative. The
solution to this conflict has to do with a phenomenon called overflow. This problem is due to
the fact that the integer 36, which is the true sum of 16 and 20, cannot be represented in a 6-
bit system. Whenever the sum of two numbers cannot be represented in the current two’s
complement system, overflow occurs. The problem of overflow is serious because, unless the
computer reports the error, the computation could return an erroneous result.

An applet that will help you become more familiar with the concept of overflow is found at:
http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/TwosComplement.html

1. Make sure the option Demo Mode is selected.
2. Click on the individual bits to change them from 1 to 0 and 0 to 1.
3. See if you can get the applet to achieve overflow. The circle above the word Overflow

will turn red when overflow occurs.
4. By clicking on the arrow to the right of number 4 you can change the number of bits in

the system to 6 or 8.

