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CS-160 Lab #3: Hexadecimal and Two's Complement  

General 
Read through the “Background” material below, then download the Lab #2 question set and 
answer the questions. Turn in the questions using the instructions posted on the class web site.   
 
For ALL Word processing documents, you must submit your documents in one of the following 
formats: MS-Word (NOT Works), RTF (most word processors can save in this format), or Open 
Document (used by the freely available Open Office suite). They will be returned ungraded if 
submitted in any other format. 

 

Concepts 
This lab will give you an introduction to additional representation systems important to computer 
operations: hexadecimal, and binary two's complement representations (for signed integers).  

 

Background 
Note: Original source of the background contained below is from the “CS160 Worksheets” by 
Daniel Balls of the CS department at Oregon State University; updated and revised by Mitch 
Fry (CS, Chemeketa Community College). 
 

 

Hexadecimal Integer representations 
 
In the previous worksheet we worked with a number system that is very important to computer 
operation—the binary system.  Another non-decimal number system that plays an important 
role in computer science is the hexadecimal system (base 16 numbers).  This number system 
has 16 digits.  Since there are only 10 Arabic numerals, we need additional symbols to 
represent the values 10, 11, 12, 13, 14, and 15.  We’ll let the letter A represent the value 10, B 
represent the value 11, and so on, through F, which will represent the value 15.      
 
An example of a hexadecimal number is 4C7.  To compute the decimal value of this number, it 
is important to know that each place value is associated with a power of 16 in the same way 
the powers of ten are associated with the decimal system and the powers of two are associated 
with the binary system.  So 4C7 is equivalent to the following decimal number:   

 

4·16
2
 + C·16

1
 + 7·16

0
 = 4·256 + 12·16 + 7·1 = 1024 + 192 + 7 = 1223. 

 
Another number system that has application in the field of computer science is the octal 
number (base 8) system.  This system has 8 digits—0, 1, 2, 3, 4, 5, 6, and 7.  As its positional 
values, the octal system uses the powers of 8 (but you may have guessed that by now).  Then 
452 in the octal number system is equivalent to the decimal number:  

 

4·8
2
 + 5·8

1
 + 2·8

0
 = 4·64 + 5·8 + 2·1 = 256 + 40 + 2 = 298. 

 
We will not study octal numbers any further for this class (nor will they appear on exams) as 
they are used less frequently than binary and hexadecimal representations.  
 
The next activity will make you more familiar with hexadecimal numbers.  
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Practice Exercise:  Fill in the blanks with the appropriate hexadecimal and octal integers. 

 
Decimal Hex. Decimal Hex.  

1 __________ 51 __________ 
2 __________ 52 __________ 

3 __________ 53 __________ 
4 __________ 54 __________ 

5 __________ 55 __________ 
6 __________ 56 __________ 
7 __________ 57 __________ 

8 __________ 58 __________ 
9 __________ 59 __________ 

10 ____A_____ 60 __________ 
11 __________ 61 ____3D____ 
12 __________ 62 __________ 

13 __________ 63 __________ 
14 __________ 64 __________ 

15 __________ 65 __________ 
16 __________ 66 __________ 
17 __________ 67 __________ 

18 __________ 68 __________ 
19 __________ 69 __________ 

20 __________ 70 __________ 
21 __________ 71 __________ 
22 __  _16_  __ 72 __________ 

23 __________ 73 __________ 
24 __________ 74 __________ 

25 __________ 75 __________ 
26 __________ 76 __________ 
27 __________ 77 __________ 

28 __________ 78 __________ 
29 __________ 79 __________ 

30 __ __   ____ 80 __________ 
31 __________ 81 __________ 

32 __________ 82 __________ 
33 ___21____ 83 __________ 
34 __________ 84 __________ 

35 __________ 85 __________ 
36 __________ 86 __________ 

37 __________ 87 __________ 
38 __________ 88 __________ 
39 __________ 89 ____59____ 

40 __________ 90 __________ 
41 __________ 91 __________ 

42 __________ 92 __________ 
43 __________ 93 __________ 
44 __________ 94 __________ 

45 __________ 95 __________ 
46 __________ 96 __________ 

47 __________ 97 __________ 
48 __________ 98 __________ 
49 __________ 99 __________ 

50 __________ 100 __________ 
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Hexadecimal and Decimal Conversions 
 
The procedure for converting numbers between the hexadecimal and decimal number systems 

should have a familiar feel:  to convert a decimal number to its hexadecimal equivalent, first 
find the decimal number’s binary form, then arrange the bits from right to left into groups of 
four.  For example, to find the hexadecimal equivalent of the decimal 269, we first need to 
obtain the binary form of 269.  Using either of the methods present in the last worksheet, it 
can be shown that the binary equivalent of 269 is 100001101.  Regrouping this binary form into 
strings of 4 bits (and adding three leading zeros on the LEFT) shows that the decimal 269 can be 
written as 0001 0000 1101.  These three strings correspond to the hexadecimal 1, 0, and D, 
respectively.  Therefore the hexadecimal equivalent of the decimal 269 is 10D. 

 
To find the decimal equivalent of the hexadecimal integer 82C, we’ll first write this number in 
a binary form:  1000 0010 1100 = 100000101100.  Next, we add appropriate powers of two to 
obtain the result:  1·211 + 1·25 + 1·23 + 1·22 = 2048 + 32 + 8 + 4 = 2092.  Therefore the 
hexadecimal number 82C has an equivalent decimal form of 2092. 
 
 

Two’s Complement 

 
Up to this point we have seen how it is possible to represent whole numbers (e.g. 0, 1, 2, 3, …) 
using bits.  But can one represent the integers (i.e., the counting numbers and their negative 
counterparts) using the binary system?  The answer to this question is yes.  The most common 
system for representing the integers is called two’s complement notation.  Although most 
computers today use a 32 bits to represent the integers, learning the two’s complement system 
with that many bits would be too cumbersome.  Therefore, we will study the features of the 
two’s complement system using only 6 bits.  As we shall soon see, using a 6-bit pattern, we are 
able to represent all the integers from -32 to 31.  It is important to note that the 6-bit pattern 
and the 32-bit pattern are identical in structure, so studying the 6-bit pattern does have merit.  
The 32-bit pattern is used in actual computers so that more integers (from -2,147,483,648 to 
2,147,483,647) can be represented.  The table below contains some of the representations of 
the integers in a 6-bit two’s complement system. 

Value 

Represented Bit Pattern 

31 011111 

30 011110 

… … 

5 000101 

4 000100 

3 000011 

2 000010 

1 000001 

0 000000 

–1  111111 

–2 111110 

–3 111101 

–4 111100 

–5 111011 

… … 

–30 100010 

–31 100001 

–32 100000 
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In any two’s complement system, the leftmost bit represents the sign (+ or –) of the integer. 
For this reason, it is called the sign bit.  The integer is negative when the sign bit is 1; the 
integer is either zero or positive when the sign bit is 0.  To represent the positive integers 
leading zeros are added as needed to the left of the normal binary representation of the 
integer.  For example the number 23, which has a binary representation 10111, is represented 
as 010111 in a 6-bit two’s complement system. Using a 6-bit two’s complement system, if the 
uppermost (leftmost) bit is one, then the number is a negative value; the uppermost bit would 
represent the value -25 (-32). The uppermost bit for a 7-bit two’s complement system 
represents the value -26  or -64.  For example, the number 1011001 can be converted to a 
decimal representation as follows:   
 

1·(-2
6
) + 0·2

5
 + 1·2

4
 + 1·2

3
 + 0·2

2
 + 0·2

1
 + 1·2

0
 =  (-64) + 16 + 8 + 1 = (-39)  

 
 
The easiest way to find the representation of a negative integer is to begin with its positive 
counterpart. For example, to find the two’s complement representation for the integer –23, we 
start with the two’s complement representation of 23:  010111.  At this point there are several 
methods that can be used to determine the 6-bit two’s complement representation of –23.  
Both methods are described below. 

 
The first method is referred to as the ‘copy and complement’ method.  Beginning at the right, 
the bits of the positive integer are copied up to and including the first 1 bit.  In our example, 
since the rightmost digit is 1, it is the only digit copied: __ __ __ __ __ _1_.  The remaining 
digits of the negative integer are the complement of the remaining bits of the positive integer.  
The complement of a pattern is found by changing all 0s to 1s and all 1s to 0s.  Thus, the 
complement of the remaining portion of 23 is 1  0  1  0  0  1, and the integer –23 is written 
101001 in two’s complement notation 
 
Another method to find the negation of a number in two’s complement notation could be 
named the ‘complement and add 1’ method.  We obtain the complement of the original 
number and add one to it.  Using the same example of 23, we begin by determining the 
complement of 010111, which is 101000.  Adding 1 to this complement yields the same result as 
before:  101001.  Notice that regardless of what method is used, a positive integer—which 
always begins with 0—will always have an opposite or negation that begins with a 1—and is 
therefore negative. 

 

Practice Exercise:  Using either of the methods described above, find the negation of 

each of the following numbers, represented in 6-bit two’s complement notation:   

 

001110   negation = ____________________________________  

 

010010   negation = ____________________________________ 

         

110011   negation = ____________________________________ 

 

000000   negation = ____________________________________  

 

 
The ability to negate a number written in two’s complement form is crucial in finding the value 
of any number written in a two’s complement system—for example what integer does the 
number 110110 represent?  The first task is to determine whether the integer is positive or 
negative.  This factor depends on the sign bit—the first bit of the string.  If the first bit is 0, 
finding the value of the number amounts to converting the number—which is basically in binary 
form—into its decimal equivalent.  If however the number’s sign bit is 1 (and therefore the 
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number is negative), treating the number as if it is part of the binary system will not work.  
Instead, we need to find the magnitude of the number and then place a negative sign in front 
of this magnitude.  And what is the magnitude of a negative number?  It is that number’s 
negation.  In our example, the negation of 110110 is 001010 and this number corresponds to the 
binary number 1010.  This binary number has a decimal equivalent of 10, which means 110110 
is equivalent to the negation of 10, or –10.         

 

Practice Exercise:  Convert these 6-bit, two’s complement integers into decimal form. 

 

101000 ______________________________________________ 

 

110011 ______________________________________________ 

 

111111 ______________________________________________ 

 

 

 

 

 

Practice Exercise:  Convert these decimal integers to 6-bit, two’s complement form. 

 

   14    ______________________________________________ 

 

–27  ______________________________________________ 

 

–11   ______________________________________________ 

  

 

Binary and Two’s Complement Addition 

 
One method of verifying that 101001 represents –23 is to add this string to the two’s 
complement representation of 23 and check the result.  If the sum is 0, which is the sum of 23 
and –23, then we can be sure that 101001 is indeed the representation of –23.   
 
Adding numbers written in two’s complement notation is equivalent to adding numbers in the 
binary system.  To add two binary numbers, one must be familiar with some basic base-2 
addition facts, much like we must understand basic base-10 addition facts.  Fortunately, there 
are only a few facts to know! 

 

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 10 + 1 = 11 

 

 
The base-10 addition practice of ‘carrying a leftover’ is used when adding binary numbers.  
Thus if the binary number 110 is added to the number 111, the result is 1101 as expected and is 
described below. 

 

 

 

 

 

 

1 1 0 

1 1 1 + 

1 1 0 1 

1 

1 

1 1 0 

1 1 1 + 

0 1 

1 
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The 1 and 1 in the middle column add to                           The 1 and 1 in the leftmost column, combined            

10 and the 1 (from 10) is carried to the                             with the 1 carried from the middle column, add to 

leftmost column.                                                               11.  The leading 1 (from 11) is carried once again.                          

 
This method is analogous to addition in the decimal system.  However, when adding numbers in 
two’s complement notation, a change in the familiar method is necessary since the number of 
bits of the sum must be equal to the number of bits in each of the addends.  In other words, 
when two numbers that are represented in a 6-bit two’s complement system are added 
together, the result must also have exactly six bits.  What happens when there is an extra 1 
that, according to our decimal rule, should be put into a seventh bit position?  The answer is 
that it is simply discarded.  (This may be counterintuitive, but it works!)  
 
Using our knowledge of addition in the two’s complement system, we can now compute the 
sum of 101001 and 010111, which as shown below does equal 0 (or in 6-bit two’s complement 
notation 000000).   

 

 

 

 

 

 

 

 

 

 
 

The sum of 101001 and 010111 is 00000, which means they are negations of each other. 

 

One of the powerful features of a two’s complement system is that it contains the structure to 
not only perform additions, but also subtractions.  At the foundation of this process is the fact 
that any subtraction problem can be rewritten as an addition problem [for example, 12 – 8 = 12 
+ (–8)].  So if a computer has the ability to perform addition (i.e., if it has an adder) it will also 
be able to perform subtraction.  The subtraction problem 12 – 8 could be performed by writing 
the integers 12 and –8 in two’s complement notation and then adding them.  This addition is 
shown below.  Note that while we could have used a 6-bit (or 32-bit) system, a simpler 5-bit 
system is sufficient, since the positive integer is less than or equal to 15 and the negative 
integer is greater than or equal to -16.   

     

 

 

 

 

 

 

 

 

 
 

A model of the subtraction problem 12 – 8 using two’s complement notation.   The number 01100 

represents 12 and 11000 represents –8.  The expected result 4 will is evident after the leftmost ‘carried 1’ 

(created by the addition of 1 and 1 in the leftmost column) is discarded. 

 

 

1 0 1 0 0 1  

0 1 0 1 1 1  + 

0 0 0 0 0 0 

1 

1 

1 1 1 1 

This carried 1 

is discarded. 

0 1 1 0 0  

1 1 0 0 0  + 

 0 0 1 0 0 

1 

1 

This 1 is 

 discarded. 
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Practice Exercise:  Using a 6-bit two’s complement system, perform the following 

addition and subtraction problems: 

 

23 + 7   –13 – 18  28 – 19  16 + 20   

 
Did you run into a problem with the last sum (16 + 20)?  If you did everything correctly, your 
sum should have been 100100.  But this doesn’t make sense, since the sum of two positive 
numbers is positive. The integer 100100 begins with a one and is therefore negative.  The 
solution to this conflict has to do with a phenomenon called overflow.   This problem is due to 
the fact that the integer 36, which is the true sum of 16 and 20, cannot be represented in a 6-
bit system.  Whenever the sum of two numbers cannot be represented in the current two’s 
complement system, overflow occurs.  The problem of overflow is serious because, unless the 
computer reports the error, the computation could return an erroneous result. 
 
An applet that will help you become more familiar with the concept of overflow is found at: 
http://newterra.chemeketa.edu/faculty/mfry5/cs160/applets/TwosComplement.html   
 

1. Make sure the option Demo Mode is selected. 
2. Click on the individual bits to change them from 1 to 0 and 0 to 1. 
3. See if you can get the applet to achieve overflow.  The circle above the word Overflow 

will turn red when overflow occurs.    
4. By clicking on the arrow to the right of number 4 you can change the number of bits in 

the system to 6 or 8. 

 
 

 


