
CS Core Sequence Outcomes AnalysisCollectionsAlgorithms

1

Category Outcome Importance Proficiency BigO Expectations Dissent

Abstract Analysis Classify and rank common algorithms and data structure operations by asymptotic
time complexity. Essential Competent

Abstract Analysis Understand the different cases for which complexity can be analyzed (best, worst,
average) including basic amortized analysis (insertEnd in an array based list). Essential Competent EOU only covers BigO

Abstract Analysis Algebraically manipulate standard notations for complexity. (Recognize that n(3n +
2) => 3n^2 + 2n => O(n^2)). Essential Competent

Abstract Analysis
Identify the asymptotic complexity of new algorithms involving standard operations
on array, linked list, binary search tree, and hash table. Select appropriate tools
based on time complexity

Essential Proficient

Abstract Analysis
Correctly identify the resources/operations to be counted in complexity analysis. e.
g. Given a list of 10,000 numbers, but only 500 unique values, correctly reason
about the efficency of building a set.

Essential Competent

Abstract Analysis
Describe the situations where asymptotic time complexity fails to capture important
differences in algorithms. e.g. Small problem sizes and large constant factors
(especially for algorithms in the same BigO category)

Essential Competent

Abstract Analysis Discuss considerations other than time complexity that might be used to select an
algorithm: space complexity, programming time, maintainability, etc... Essential Exposure EOU saves for Algorithms

Searching & Sorting Implement linear and binary searches Essential Proficient

Searching & Sorting Describe different characteristics for sorting algorithms including stability, in-place,
adaptivity, partial sorting. Select appropriate algorithms based on these criteria Essential Proficient

Searching & Sorting Implement quadratic sorts - selection, insertion. Essential Proficient Proficient
Searching & Sorting Implement mergesort and quicksort. Essential Proficient Proficient Not covered at EOU, UO
Searching & Sorting Describe heapsort (Essential) and implement it (Recommended) Essential Exposure Not covered at EOU
Searching & Sorting Describe the logic of hybrid sorting algorithms (introsort, Timsort) Recommended Exposure Not covered at EOU

Searching & Sorting Describe non-comparison based sorting algorithms (bucket sort/radix sort) and
identify situations in which they are appropriate Recommended Exposure Not covered at EOU

General Data Structures Recognize the difference between an Abstract Data Type and an implementation of
that ADT. Essential Proficient

General Data Structures Describe expected operations for the following Abstract Data Types: list, sorted list,
stack, queue, set, table. Essential Proficient

General Data Structures Describe expected operations for the following Abstract Data Types: deque. Recommended Proficient

General Data Structures
Reason about different implementations of an abstract data type. Identify the
contraints of implementations and recognize implicit vs explicit structure
(representing a heap with an array; maintaining a sorted list).

Essential Competence

General Data Structures Implement static or dynamically sized containers. Reason about complexities
related to resizing a container and possible optimizations for a static container. Essential Competence Competence

General Data Structures Build nested data structures using arrays and lists. (e.g. array of lists that might be
used to implement a hash table) Essential Competence Exposure Not covered at EOU

General Data Structures Implement shallow or deep copies of data structures and choose the appropriate
type of copy for a particular job. Essential Proficient

General Data Structures Use features of a language to create a generic data structure. (i.e. a LinkedList that
can hold any data type, not just a IntegerLinkedList) Essential Competence

General Data Structures Recognize iterator concepts and how to use them to write algorithms that interact
with data structures. Recommended Exposure Not covered at EOU

Lists
Implement a singly linked or doubly linked list including circular lists. For those
structures implement fundamental algorithms like insert, remove, traverse, delete,
and merge.

Essential Proficient Proficient

Lists Implement an array based list with fundamental algorithms like insert, remove,
traverse, delete Essential Proficient Proficient

Stacks & Queues Implement both stacks and queues using linked lists and arrays. Essential Proficient Proficient

Stacks & Queues Use stacks and queues to implement algorithms. (e.g. basic parsing task using a
stack) Essential Proficient Proficient

BST Implement a node-based BST and fundamental algorithms like insert, contains,
delete. Essential Proficient Proficient Not covered at UO

BST Use appropriate terminology to describe BSTs and their nodes (height, depth,
completness, subtree, etc...) Essential Proficient Not covered at UO

BST Implement pre/in/post order traversals and pick the appropriate strategy for a given
task. Essential Proficient Proficient Not covered at UO

Heaps Implement a binary heap with fundamental operations like add, get min/max, delete. Essential Competence Competence
Hashing & Hash Tables Implement hash tables with fundamental operations like insert, remove, delete. Essential Proficient Proficient

Hashing & Hash Tables Recognize what makes a good (or perfect) hash function. Construct a hash function
for different data types. Essential Competence

Hashing & Hash Tables Use either open addressing or chaining to resolve colisions in a hash table. Essential Proficient Proficient

Self Balancing Trees Describe how a self balancing tree will handle inserting or removing a value. Be
familiar with logic behind AVL and/or RedBlack trees. Essential Competence Competence Not covered at UO

Self Balancing Trees Describe how a B tree is organized and how values would be inserted or removed. Essential Competence Not covered at EOU, UO
Graphs Use appropriate terminology to describe graphs. Essential Competence Not Expected EOU covers in Algorithms.

Graphs
Identify different representations of a graph (adjacency list/matrix) and translate
between them. Essential Proficient

EOU covers in Algorithms.
WOU in Algorithms or math

courses

Graphs
Identify traversal order for breadth first or or depth first searches on a graph.

Essential Proficient
EOU covers in Algorithms.
WOU in Algorithms or math

courses

Graphs
Perform by hand basic graph based algorithms (e.g. shortest path, minimal
spanning tree) Recommended Exposure Not Expected

EOU covers in Algorithms.
WOU in Algorithms or math

courses

